A Learning Based Search Engine Selection Technique
نویسندگان
چکیده
A good search engine selection algorithm should identify potentially useful databases accurately. Many approaches have been proposed to tackle the database selection problem. Such as Rough approach, static approach and learning approach. To fulfill the demand of users and help them to be more effective on selecting relevant and useful search engines, this paper presents a search engine selection algorithm that is based on training query and demands of user query.
منابع مشابه
RRLUFF: Ranking function based on Reinforcement Learning using User Feedback and Web Document Features
Principal aim of a search engine is to provide the sorted results according to user’s requirements. To achieve this aim, it employs ranking methods to rank the web documents based on their significance and relevance to user query. The novelty of this paper is to provide user feedback-based ranking algorithm using reinforcement learning. The proposed algorithm is called RRLUFF, in which the rank...
متن کاملA Differential Evolution and Spatial Distribution based Local Search for Training Fuzzy Wavelet Neural Network
Abstract Many parameter-tuning algorithms have been proposed for training Fuzzy Wavelet Neural Networks (FWNNs). Absence of appropriate structure, convergence to local optima and low speed in learning algorithms are deficiencies of FWNNs in previous studies. In this paper, a Memetic Algorithm (MA) is introduced to train FWNN for addressing aforementioned learning lacks. Differential Evolution...
متن کاملFeature Selection-model-based Content Analysis for Combating Web Spam
With the increasing growth of Internet and World Wide Web, information retrieval (IR) has attracted much attention in recent years. Quick, accurate and quality information mining is the core concern of successful search companies. Likewise, spammers try to manipulate IR system to fulfil their stealthy needs. Spamdexing, (also known as web spamming) is one of the spamming techniques of adversari...
متن کاملIs learning to rank effective for Web search?
LETOR, the benchmark collection for learning to rank, helps make comparative study on different approaches in experimental research. Since the collection is constructed mainly based on TREC datasets, queries and documents in LETOR differ from true Web search scenario on some aspects, such as its incomplete link information, limited documents’ domain, and lack of user click information. Hence th...
متن کاملWeb pages ranking algorithm based on reinforcement learning and user feedback
The main challenge of a search engine is ranking web documents to provide the best response to a user`s query. Despite the huge number of the extracted results for user`s query, only a small number of the first results are examined by users; therefore, the insertion of the related results in the first ranks is of great importance. In this paper, a ranking algorithm based on the reinforcement le...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2014